

HPS-72010-xx

25Gb/s 850nm 100m SFP28 Transceiver

Product Description

The 72010-xx is a 25Gbps enhanced small form factor pluggable SFP28 optical transceiver. It's designed for use in 25-Gigabit Ethernet and other ultra high speed optical links up to 100m over dual strand Single Mode fiber.

Features

- 25Gbps data links
- Up to 100m in 50/125µm OM4
- 850nm VCSEL
- Duplex LC Connector
- Hot-pluggable
- Single 3. 3V power supply
- Power Consumption < 1W
- Digital Diagnostic Monitor (DDM)

Applications

- 25GBASE-SR Ethernet
- 25G Propriety optical links

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Supply Voltage	Vcc	-0.5	4	V
Storage Temperature	Ts	-40	85	°C
Operating Case Temperature	Тс	0	70	°C

Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit
Power Supply	Vcc	3.13	3.3	3.47	V
Voltage					
Power Supply	Icc			280	mA
Current	ICC			200	ША
Data Rate		24.3	25.78		GBps
Max Link Length on 5/125µm OM4 MMF	Lmax			100	m

Optical Characteristics

Parameter	Symbol	Min.	Typical	Max.	Unit		
	Transmitter						
Centre Wavelength	λς	840	850	860	nm		
Spectral Width (-20dB)	σ			4	nm		
Average Output Power	Pout	-8.4		2.4	dBm		
Extinction Ratio	ER	2			dB		
Optical Modulation Amplitude	OMA	-6.4		3	dBm		
Launch power in OMA minus TDP (min)	OMA_TDP	-7.3			dBm		
Average Launch Power, Laser Off	Poff			-30	dBm		
Transmitter dispersion penalty	TDP			4.3	dB		

Optical Return Loss Tolerance	ORLT			12	dB
	Receiver				
Centre Wavelength	λς	840	850	860	nm
Receiver Sensitivity (OMA)	Pin			-5.2	dBm
Receiver Overload	Pin max	3.4			dBm
Reflectance	Ref			-12	dB
LOS De-Assert	LOSD			-17	dBm
LOS Assert	LOSA	-30			dBm
LOS Hysteresis		0.5		4	dB

Electrical Characteristics

Parameter	Symbol	Min.	Typica I	Max.	Unit			
Trar	Transmitter (module input)							
Differential Data Input	Vin P-P	90		800	mVpp			
Differential termination				5	%			
Tx Disable Normal	VIL	-0.3		0.8	V			
Tx Disable	VIH	2		VCC+0.3	V			
Receiver (module input)								
Differential Data Output	Vout P- P	185		425	mVpp			
Differential termination				5	%			
Rx-Los Fault	VIf	Vcc-0.2			V			
Rx-Los Normal	Vln			0.2	V			
Output rise and fall time	Tr, Tf	12			ps			

DDM Thresholds

	Low Alarm	Low Warn	High Warn	High Alarm
Temperature	-10°C	-5°C	75°C	80°C
Voltage	3V	3.1V	3.5V	4V
Tx Bias	2mA	3mA	10mA	11mA
Tx Power	-9dBm	-6dBm	3dBm	3.5dBm
Rx Power	-13dBm	-10dBm	3dBm	3.5dBm

For safety and reliability reasons, please read the following information carefully.

Light Budget is one of the key items for designing fiber optic network. in order to create a product that will meet application requirements. To adequately characterize the budget loss, the following key parameters are generally considered:

- Transmitter: Output power, temperature and aging
- Fiber connections: Active connection and splices
- Fiber Cable: fiber attenuation and temperature effect
- Receiver: Detector sensitivity
- Others: Safety margin and repairs

When one of the above-listed variables fails to meet specifications, the performance of the network can be greatly affected or worse, the degradation can lead to network failure. Unfortunately, not all the variables can be controlled with ease during the deployment of the network or the maintenance stage; however, there exists one component—the connector—that is too-often overlooked, sometimes overused (test jumpers) but that can be controlled using the proper procedure.

This is a Class 1 Laser Product according to IEC 60825-1:2014 compatible with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all others electrical input pins, tested per MIL-STD-883G, Method 3015.4 / JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module.

Dirt / debris

The optical ports of the module need to be terminated with an optical connector or with a dust plug in order to avoid contamination. In a study by NTT-Advanced Technology, 98% of installers and 80% of network owners reported that issues with connector contamination were the greatest cause of network failures.

CE EU declaration of conformity

The CE marking is mandatory for this category of products. It is the manufacturer's declaration that the product meets the requirements of the applicable EU directives required to allow free movement and sale of the product throughout the European Economic Area.

Equipment Specific part number extension

-51	Cisco	-59	Alcatel (Nokia)
-52	Ericsson	-60	Combo code
-53	Huawei	-61	H3C (HP)
-54	Juniper	-62	Brocade
-55	Generic (MSA)	-63	AristaNetworks
-56	HP	-64	Adva
-57	Extreme	-65	Microsens
-58	3COM (HP)	-66	DELL
		-67	Intel